Recently added item(s) ×

You have no items in your shopping cart.

Biomechancial Validation Studies

Biomechanical Validation Studies

Sawbones biomechanical test materials have become a reliable industry standard with over 20 years of research and verification.

Short Fiber Filled Epoxy

Chong AC, et al., Fracture toughness and fatigue crack propagation rate of short fiber reinforced epoxy composites for analogue cortical bone. J Biomech Eng 2007;129(4):487-493.

Femur

Chong, A.C., et al., Fatigue performance of composite analogue femur constructs under high activity loading. Ann Biomed Eng, 2007. 35(7): p. 1196-205.

Heiner, A.D., Structural properties of fourth-generation composite femurs and tibias. J Biomech, 2008. 41(15): p. 3282-4.

Gardner, M.P., et al., Mechanical evaluation of large-size fourth-generation composite femur and tibia models. Ann Biomed Eng, 2010. 38(3): p. 613-20.

Zdero R, et al., The effect of cortex thickness on intact femur biomechanics: a comparison of finite element analysis with synthetic femurs. Proc Inst Mech Eng [H] J. Engineering in Medicine, 2010. 224: p. 831-840.

Zdero R, S.S., M Mosli, EH Schemitsch, The effect of load application rate on the biomechanics of synthetic femurs. Proc Inst Mech Eng [H] J. Engineering in Medicine, 2009. 224: p. 599-605.

Zdero, R., et al., Cortical screw purchase in synthetic and human femurs. J Biomech Eng, 2009. 131(9): p. 094503.

Zdero R, O.M., Bougherara H,Schemitsch EH, Cancellous bone screw purchase: a comparison of synthetic femurs, human femurs, and finited element analysis. Proc. IMechE: J. Engineering in Medicine, 2008. Vol 222(Part H): p. 1175-1183.

Zdero, R., et al., Biomechanical evaluation of periprosthetic femoral fracture fixation. J Bone Joint Surg Am, 2008. 90(5): p. 1068-77.

Tibia

Heiner, A.D., Structural properties of fourth-generation composite femurs and tibias. J Biomech, 2008. 41(15): p. 3282-4.

Gardner, M.P., et al., Mechanical evaluation of large-size fourth-generation composite femur and tibia models. Ann Biomed Eng, 2010. 38(3): p. 613-20.

Humerus

Dunlap, J.T., et al., Structural properties of a novel design of composite analogue humeri models. Ann Biomed Eng, 2008. 36(11): p. 1922-6.

Aziz, MSR, et al. Biomechanical measurement of stopping and stripping torques during screw insertion in five types of human and artificial humeri. Proc Inst Mech Eng [H] J. Engineering in Medicine. 2014. 228 p. 446 – 455.

Aziz MSR, et al. Biomechanical Measurements of Stiffness and Strength for Five Types of Whole Human and Artificial Humeri, Journal of Biomechanical Engineering, 2014, 136(5), 051006-1-10

Aziz MSR, et al. Biomechanical Measurements of Cortical Screw Purchase in Five Types of Human and Artificial Humeri, Journal of the Mechanical Behavior of Biomedical Materials, 2014, 30, 159-167

Review

Elfar, John et al. Composite Bone Models in Orthopaedic Surgery Research and Education. J AAOS. 22.2 (2014): 111–120. PMC. Web. 4 Nov. 2016

Rigid Foam

ASTM F1839: Standard Specification for Rigid Polyurethane Foam for Use as a Standard Material for Testing Orthopaedic Devices and Instruments

Nagaraja S, Palepu V. Comparisons of Anterior Plate Screw Pullout Strength Between Polyurethane Foams and Thoracolumbar Cadaveric Vertebrae. J Biomech Eng. 2016;138(10). doi: 10.1115/1.4034427. PubMed PMID: 27536905.

Calvert KL, Trumble KP, Webster TJ, Kirkpatrick LA. Characterization of commercial rigid polyurethane foams used as bone analogs for implant testing. J Mater Sci Mater Med. 2010;21(5):1453-61. doi: 10.1007/s10856-010-4024-6. PubMed PMID: 20162325.

Gausepohl T, Mohring R, Pennig D, Koebke J. Fine thread versus coarse thread. A comparison of the maximum holding power. Injury. 2001;32 Suppl 4:SD1-7. PubMed PMID: 11812471.

Hsu JT, Huang HL, Chang CH, Tsai MT, Hung WC, Fuh LJ. Relationship of three-dimensional bone-to-implant contact to primary implant stability and peri-implant bone strain in immediate loading: microcomputed tomographic and in vitro analyses. The International journal of oral & maxillofacial implants. 2013;28(2):367-74. doi: 10.11607/jomi.2407. PubMed PMID: 23527336.

Patel PS, Shepherd DE, Hukins DW. Compressive properties of commercially available polyurethane foams as mechanical models for osteoporotic human cancellous bone. BMC Musculoskelet Disord. 2008;9:137. PubMed PMID: 18844988.

Szivek JA, Thomas M, Benjamin JB. Characterization of a synthetic foam as a model for human cancellous bone. J Appl Biomater. 1993;4(3):269-72. PubMed PMID: 10146310.

Szivek JA, Thompson JD, Benjamin JB. Characterization of three formulations of a synthetic foam as models for a range of human cancellous bone types. J Appl Biomater. 1995;6(2):125-8. PubMed PMID: 7640439.

Thompson JD, Benjamin JB, Szivek JA. Pullout strengths of cannulated and noncannulated cancellous bone screws. Clin Orthop Relat Res. 1997(341):241-9. PubMed PMID: 9269180.

Thompson MS, McCarthy ID, Lidgren L, Ryd L. Compressive and shear properties of commercially available polyurethane foams. J Biomech Eng. 2003;125(5):732-4. PubMed PMID: 14618933.

Biomechanical Spine

Camisa W, Leasure J, Buckley J. Validation of a synthetic lumbar spine. The Spine Journal.  29th Annual NASS meeting. 2014.

Wang T, Ball JR, Pelletier MH, Walsh WR. Biomechanical evaluation of a biomimetic spinal construct. Journal of experimental orthopaedics. 2014, 1:3.

Wang T, Ball JR, Pelletier MH, Walsh WR. Initial experience with synthetic spinal motion segments: biomechanical assessment of high cycle and implant performance. Orthopaedic Research Society 2014. Poster presentation 0715.

Campbell JR, Imsdahl SI, Ching RP. Evaluation of a synthetic L2-L5 spine model for biomechanical testing. Canadian Society of Biomechanics 2012.  Poster presentation.

Campbell JR, Imsdahl SI, Ching RP. Evaluation of a synthetic functional spine unit. Northwest biomechanics symposium. 2011.

Domann, John et al. The Analogue Spine Model: The First Anatomically and Mechanically Correct Synthetic Physical Model of the Lumbar Spine. The Spine Journal , Volume 11 , Issue 10 , S155 - S156. 2011.